This blog post has moved to mozanunal.com

You should be redirected shortly, alternatively please click the following link

SimpleCV ile Görüntü İşlemeye Giriş
Herkese Merhabalar,
        Görüntü işleme hızla popülerleşen ve gittikçe daha fazla üzerine projeler geliştirilen ve hatta hayatımızda kullandığımız araç gereçlerde kullanılan bir alan olmaya başladı. Bu durumda bir sürü insan bu konu üzerine bir şeyler yapmak istiyor fakat daha kurulum aşamasında veya kaynak yetersizliğinden dolayı bu ilgilerinden vazgeçiyorlar. Bu sorun için önerebileceğim bir çözüm var. SimpleCV!



SimpleCV'nin opencv ve matlab ile karşılaştırıldığı makaleye buradan ulaşabilirsiniz.

http://simplecv.org/download/



       SimpleCV görüntü işlemeyle alakalı paketlerin bir arada toplandığı bir python paketler bütünüdür. yukarıdaki linkten kurulum dosyasını indirip sadece bir kaç tık ile kurabilirsiniz.
       SimpleCV ile yüklediğimiz paketler ise şöyle:

      Görüldüğü gibi Python'un bile yüklü olmasına gerek yok ihtiyacımız olan tüm paketler bir kaç tık ile yükleniyor. Aşağıda basit bir SimpleCV kodu bulunmakta aynı zamanda aşağıdaki linklerden dökümantasyona ve örneklere bakabilirsiniz.
http://simplecv.readthedocs.io/en/latest/
http://examples.simplecv.org/en/latest/

from SimpleCV import Camera
# Initialize the camera
cam = Camera()
# Loop to continuously get images
while True:
    # Get Image from camera
    img = cam.getImage()
    # Make image black and white
    img = img.binarize()
    # Draw the text "Hello World" on image
    img.drawText("Hello World!")
    # Show the image
    img.show()

SimpleCV fonksiyonları ve kullanımları:


Description
SimpleCV

Reading an image

Image(’lenna.png’)
Converting the image to RGB colorspace

img.toRGB()
Converting the image to BGR colorspace

img.toBGR()
Converting the image to HLS colorspace

img.toHLS()
Converting the image to HSV colorspace

img.toHSV()


Converting the image to XYZ colorspace

img.toXYZ()
Converting the image to GRAY colorspace

img.toGray()
Create a new, empty OpenCV bitmap

img.getEmpty(channels)
Full copy of the  image
img.copy()
Resize the image
img.resize(x,y)
Invert image
img.invert()
Horizontally mirror an image

img.flipHorizontal()
Vertically mirror an image

img.flipVertical()
Stretch  filter  on a greyscale image

img.stretch(thresh low, thresh high)
Binary threshold
img.binarize(thresh, maxv,
of the image
blocksize, p)
Mean color of the  image

img.meanColor()
Finds the FeatureSet strongest corners first
img.findCorners(maxnum, minquality, mindistance)

Blobs are continuous light regions
img.findBlobs(threshval, minsize, maxsize, threshblocksize, threshconstant)
Finding the location of a known object
findHaarFeatures(self,  cascade,
scale factor, min neighbors, use canny)
Uploading the Image to Imgur or Flickr
img.upload(dest,api key, api secret,verbose)
Smooth the image
img.smooth(algorithm name, aperature, sigma, spatial sigma, grayscale)
Draw a circle on the Image

img.drawCircle(ctr, rad, color, thickness)
Draw a line
img.drawLine(pt1, pt2, color, thickness)
Size of image
img.size()
Split the image into a series of image chunks
img.split(cols, rows)
Images of R,G,B channels are recombined into a single image

img.mergeChannels(r,b,g)
Apply a color correction curve in HSL space
img.applyHLSCurve(hCurve, lCurve, sCurve)
Apply a color correction curve in RGB space
img.applyRGBCurve(rCurve, gCurve, bCurve)
Applies Intensity to
all three color channels

img.applyIntensityCurve(curve)
Returns Image of the string

img.toString()

Split the channels
of an image into RGB
img.splitChannels(grayscale)
Returns image representing the distance of each pixel from a given color tuple

img.colorDistance(color)
Apply morphological erosion to a image

img.erode(iterations)
Apply morphological dilation to a image

img.dilate(iterations)
Histogram equalization on the image
img.equalize()
Applies erosion operation followed by a morphological dilation
img.morphOpen()
The difference between the morphological dilation and

img.morphGradient()
the morphological gradient

1D histogram(numpy array) of intensity for pixels
in the image

img.histogram(numbins)
The histogram of the hue channel for the image

img.hueHistogram(bins)
Returns the peak hue values histogram of hues

img.huePeaks(bins)
Add two images
img.  add  (other)

Subtract two images Or two images
img. sub (other) img.  or  (other)
Image division operation taking two images as input

img.  div  (other)
Raises every array element in image array to a power

img.  pow  (other)
Finds 2d and 1d

barcodes in the image
img.findBarcode(zxing path)
Finds line segments
img.findLines(threshold,  minlinelength,
in the image
maxlinegap, cannyth1, cannyth2)


Finds a chessboard
img.findChessboard(dimensions,  subpixel)
within that image



Canny edge detection method
img.edges(t1, t2)
function rotates an image

around a specific point
img.rotate(angle, fixed, point, scale)
by the given  angle

return a shear-ed image

from the cornerpoints
img.shear(cornerpoints)
Function for warp

performs an affine rotation
img.transformPerspective(rotMatrix)
Returns the RGB value for

a particular image pixel
img.getPixel(x, y)

Returns a single row of RGB values from the  image

img.getHorzScanline(row)
Returns a single column of gray values from the  image

getVertScanlineGray(column)
Returns a single row of gray values from the  image

getHorzScanlineGray(row)
Crops the image based on parameters

img.crop(x , y, w, h, centered)
Returns the selected region.
img.regionSelect(x1, y1, x2, y2  )
Clears out the entire image
img.clear()
Draws the string on the image at the specified coordinates.

img.drawText(text , x , y , color, fontsize)
Draw a rectangle on the image
img.drawRectangle(x,y,w,h,color,width,alpha)
Shows the current image
img.show(type)
Push a new drawing layer onto the back of the layer stack

img.addDrawingLayer(layer)
Insert a new layer into the
layer stack at the specified index

img.insertDrawingLayer(layer,  index)
Remove a layer from the layer stack based on the layer’s index

img.removeDrawingLayer(index)
Return a drawing layer based on the index

img.getDrawingLayer(index)

Returns the gray value for a particular image pixel

img.getGrayPixel( x, y)
Returns a single column of RGB values from the  image

img.getVertScanline(column)
Remove all of the drawing layers
img.clearLayers()
Return the array of DrawingLayer objects

img.layers()
Return all DrawingLayer objects as a single DrawingLayer.

img.mergedLayers()
Render all of the layers onto the current image

img.applyLayers(indicies)
automatically adjust image size to match the display size

img.adaptiveScale(resolution,fit=True)
Combine two images as a side by side images

img1.sideBySide(img2, side, scale)
Generate a binary mask of the image based on a range of rgb values

createBinaryMask(self,color1,color2)
Make the canvas larger but keep the image the same size

img.embiggen(size, color, pos)
The white areas of the mask will be kept and the black areas removed

img.applyBinaryMask(mask,bg  color)

Generate a grayscale or binary mask image based either on a hue or an RGB triplet

img.createAlphaMask(hue, hue lb,hue ub)
Apply a function to every pixel and return the  result

img.applyPixelFunction(theFunc)
Calculate the integral image and return it as a numpy  array

img.integralImage(tilted)
Convolution performs a shape change on an image.

img.convolve(,kernel,center)
Function searches an image for a template image
img.findTemplate(template image, threshold, method)
Return any text it can find using OCR on the image

img.readText()
extract perfect circles from the image

img.findCircle(canny,thresh,distance)
Attempts to perform automatic white balancing

img.whiteBalance(method)
Apply a LUT (look up table) to the pixels in a image

img.applyLUT(rLUT,bLUT,gLUT)
Finds keypoints in an image and returns them as the raw keypoints
img. getRawKeypoints(thresh,flavor, highQuality, forceReset)
Method does a fast local approximate nearest neighbors (FLANN) calculation between two sets of feature vectors

img. getFLANNMatches(sd,td

Calculates keypoints for both images, determines the keypoint correspondences
img.drawKeypointMatches(template, thresh, minDist,width)
Match a template image with another image using SURF keypoints.
img.findKeypointMatch(template, quality,minDist,minMatch)
This method finds keypoints in an image and returns them as a feature  set
img.findKeypoints(min quality, flavor,highQuality)
Returns the colors in the palette of the image

img.getPalette(bins,hue)
Takes in the palette from another image and attempts to apply it to this image

img.rePalette(palette,hue)
returns the visual representation (swatches) of the palette
in an image

img.drawPaletteColors(size,horizontal,bins,hue)
The method then goes through and replaces each pixel with the centroid of the clutsters found by k-means


img.palettize(bins,hue)
Palettization and behaves similar to the fndBlobs
img.findBlobsFromPalette(palette selection, minsize, maxsize)
Method uses the color palette to generate a binary image

img.binarizeFromPalette(palette selection)
Returns the RAW DFT transform of an image

img.rawDFTImage(grayscale)
Method applies a simple band pass DFT filter
img.bandPassFilter(xCutoffLow, xCutoffHigh, yCutoffLow, yCutoffHigh,grayscale)

Skeletonization of the image
smartThreshold uses a method
img.skeletonize(radius)
graph cut, to automagically
generate a grayscale mask image
img.smartThreshold(mask, rect)
It takes a image converts it
to grayscale, and applies a threshold

img.smartFindBlobs(mask,rect,thresh level)
This method is same as Paint bucket tool in image

img.floodFill(points,tolerance,color,
manipulation program
lower,upper,fixed range)
Returns Image where the values similar to the seed pixel have

img.floodFillToMask(points,tolerance,
been replaced by the input color
color,lower,upper,fixed  range,mask)
A featureset of blobs form the Mask Image
img.findBlobsFromMask(mask,threshold, minsize, maxsize )
Returns the log value of the magnitude image of the DFT transform

img.getDFTLogMagnitude(grayscale)
Apply an arbitrary filter to the DFT of an image

img.applyDFTFilter(flt,grayscale)
Applies a high pass DFT filter
img.highPassFilter(xCutoff,yCutoff,grayscale)
Applies a low pass DFT  filter
img.lowPassFilter(xCutoff,yCutoff,grayscale)
Method performs an inverse discrete Fourier transform

InverseDFT(raw dft image)
DFT is applied on image using gaussian lowpass filter

img.applyUnsharpMask(boost,dia,grayscale)

Performs an optical flow calculation and attempts to find motion between two subsequent frames

img.findMotion(previous frame, window, method, aggregate)
Creates a butterworth filter of 64x64 pixels, resizes it
to fit the image
img.applyButterworthFilter(dia, order,highpass,grayscale)
Creates a gaussian filter of 64x64 pixels, resizes it to fit image
img.applyGaussianFilter(dia, highpass, grayscale)




Etiketler: ,