You should be redirected shortly, alternatively please click the following link
SimpleCV ile Görüntü İşlemeye Girişfrom SimpleCV import Camera
# Initialize the camera
cam = Camera()
# Loop to continuously get images
while True:
# Get Image from camera
img = cam.getImage()
# Make image black and white
img = img.binarize()
# Draw the text "Hello World" on image
img.drawText("Hello World!")
# Show the image
img.show()
Description
|
SimpleCV
|
Reading an image
|
Image(’lenna.png’)
|
Converting the image to RGB colorspace
|
img.toRGB()
|
Converting the image to BGR colorspace
|
img.toBGR()
|
Converting the image to HLS colorspace
|
img.toHLS()
|
Converting the image to HSV colorspace
|
img.toHSV()
|
Converting the image to XYZ colorspace
|
img.toXYZ()
|
Converting the image to GRAY colorspace
|
img.toGray()
|
Create a new, empty OpenCV bitmap
|
img.getEmpty(channels)
|
Full copy of the image
|
img.copy()
|
Resize the image
|
img.resize(x,y)
|
Invert image
|
img.invert()
|
Horizontally mirror an image
|
img.flipHorizontal()
|
Vertically mirror an image
|
img.flipVertical()
|
Stretch filter on a greyscale image
|
img.stretch(thresh low, thresh high)
|
Binary threshold
|
img.binarize(thresh, maxv,
|
of the image
|
blocksize, p)
|
Mean color of the image
|
img.meanColor()
|
Finds the FeatureSet strongest corners first
|
img.findCorners(maxnum, minquality, mindistance)
|
Blobs are continuous light regions
|
img.findBlobs(threshval, minsize, maxsize, threshblocksize, threshconstant)
|
Finding the location of a known object
|
findHaarFeatures(self, cascade,
scale factor, min neighbors, use canny)
|
Uploading the Image to Imgur or Flickr
|
img.upload(dest,api key, api secret,verbose)
|
Smooth the image
|
img.smooth(algorithm name, aperature, sigma, spatial sigma, grayscale)
|
Draw a circle on the Image
|
img.drawCircle(ctr, rad, color, thickness)
|
Draw a line
|
img.drawLine(pt1, pt2, color, thickness)
|
Size of image
|
img.size()
|
Split the image into a series of image chunks
|
img.split(cols, rows)
|
Images of R,G,B channels are recombined into a single image
|
img.mergeChannels(r,b,g)
|
Apply a color correction curve in HSL space
|
img.applyHLSCurve(hCurve, lCurve, sCurve)
|
Apply a color correction curve in RGB space
|
img.applyRGBCurve(rCurve, gCurve, bCurve)
|
Applies Intensity to
all three color channels
|
img.applyIntensityCurve(curve)
|
Returns Image of the string
|
img.toString()
|
Split the channels
of an image into RGB
|
img.splitChannels(grayscale)
|
Returns image representing the distance of each pixel from a given color tuple
|
img.colorDistance(color)
|
Apply morphological erosion to a image
|
img.erode(iterations)
|
Apply morphological dilation to a image
|
img.dilate(iterations)
|
Histogram equalization on the image
|
img.equalize()
|
Applies erosion operation followed by a morphological dilation
|
img.morphOpen()
|
The difference between the morphological dilation and
|
img.morphGradient()
|
the morphological gradient
| |
1D histogram(numpy array) of intensity for pixels
in the image
|
img.histogram(numbins)
|
The histogram of the hue channel for the image
|
img.hueHistogram(bins)
|
Returns the peak hue values histogram of hues
|
img.huePeaks(bins)
|
Add two images
|
img. add (other)
|
Subtract two images Or two images
|
img. sub (other) img. or (other)
|
Image division operation taking two images as input
|
img. div (other)
|
Raises every array element in image array to a power
|
img. pow (other)
|
Finds 2d and 1d
| |
barcodes in the image
|
img.findBarcode(zxing path)
|
Finds line segments
|
img.findLines(threshold, minlinelength,
|
in the image
|
maxlinegap, cannyth1, cannyth2)
|
Finds a chessboard
|
img.findChessboard(dimensions, subpixel)
|
within that image
| |
Canny edge detection method
|
img.edges(t1, t2)
|
function rotates an image
| |
around a specific point
|
img.rotate(angle, fixed, point, scale)
|
by the given angle
| |
return a shear-ed image
| |
from the cornerpoints
|
img.shear(cornerpoints)
|
Function for warp
| |
performs an affine rotation
|
img.transformPerspective(rotMatrix)
|
Returns the RGB value for
| |
a particular image pixel
|
img.getPixel(x, y)
|
Returns a single row of RGB values from the image
|
img.getHorzScanline(row)
|
Returns a single column of gray values from the image
|
getVertScanlineGray(column)
|
Returns a single row of gray values from the image
|
getHorzScanlineGray(row)
|
Crops the image based on parameters
|
img.crop(x , y, w, h, centered)
|
Returns the selected region.
|
img.regionSelect(x1, y1, x2, y2 )
|
Clears out the entire image
|
img.clear()
|
Draws the string on the image at the specified coordinates.
|
img.drawText(text , x , y , color, fontsize)
|
Draw a rectangle on the image
|
img.drawRectangle(x,y,w,h,color,width,alpha)
|
Shows the current image
|
img.show(type)
|
Push a new drawing layer onto the back of the layer stack
|
img.addDrawingLayer(layer)
|
Insert a new layer into the
layer stack at the specified index
|
img.insertDrawingLayer(layer, index)
|
Remove a layer from the layer stack based on the layer’s index
|
img.removeDrawingLayer(index)
|
Return a drawing layer based on the index
|
img.getDrawingLayer(index)
|
Returns the gray value for a particular image pixel
|
img.getGrayPixel( x, y)
|
Returns a single column of RGB values from the image
|
img.getVertScanline(column)
|
Remove all of the drawing layers
|
img.clearLayers()
|
Return the array of DrawingLayer objects
|
img.layers()
|
Return all DrawingLayer objects as a single DrawingLayer.
|
img.mergedLayers()
|
Render all of the layers onto the current image
|
img.applyLayers(indicies)
|
automatically adjust image size to match the display size
|
img.adaptiveScale(resolution,fit=True)
|
Combine two images as a side by side images
|
img1.sideBySide(img2, side, scale)
|
Generate a binary mask of the image based on a range of rgb values
|
createBinaryMask(self,color1,color2)
|
Make the canvas larger but keep the image the same size
|
img.embiggen(size, color, pos)
|
The white areas of the mask will be kept and the black areas removed
|
img.applyBinaryMask(mask,bg color)
|
Generate a grayscale or binary mask image based either on a hue or an RGB triplet
|
img.createAlphaMask(hue, hue lb,hue ub)
|
Apply a function to every pixel and return the result
|
img.applyPixelFunction(theFunc)
|
Calculate the integral image and return it as a numpy array
|
img.integralImage(tilted)
|
Convolution performs a shape change on an image.
|
img.convolve(,kernel,center)
|
Function searches an image for a template image
|
img.findTemplate(template image, threshold, method)
|
Return any text it can find using OCR on the image
|
img.readText()
|
extract perfect circles from the image
|
img.findCircle(canny,thresh,distance)
|
Attempts to perform automatic white balancing
|
img.whiteBalance(method)
|
Apply a LUT (look up table) to the pixels in a image
|
img.applyLUT(rLUT,bLUT,gLUT)
|
Finds keypoints in an image and returns them as the raw keypoints
|
img. getRawKeypoints(thresh,flavor, highQuality, forceReset)
|
Method does a fast local approximate nearest neighbors (FLANN) calculation between two sets of feature vectors
|
img. getFLANNMatches(sd,td
|
Calculates keypoints for both images, determines the keypoint correspondences
|
img.drawKeypointMatches(template, thresh, minDist,width)
|
Match a template image with another image using SURF keypoints.
|
img.findKeypointMatch(template, quality,minDist,minMatch)
|
This method finds keypoints in an image and returns them as a feature set
|
img.findKeypoints(min quality, flavor,highQuality)
|
Returns the colors in the palette of the image
|
img.getPalette(bins,hue)
|
Takes in the palette from another image and attempts to apply it to this image
|
img.rePalette(palette,hue)
|
returns the visual representation (swatches) of the palette
in an image
|
img.drawPaletteColors(size,horizontal,bins,hue)
|
The method then goes through and replaces each pixel with the centroid of the clutsters found by k-means
|
img.palettize(bins,hue)
|
Palettization and behaves similar to the fndBlobs
|
img.findBlobsFromPalette(palette selection, minsize, maxsize)
|
Method uses the color palette to generate a binary image
|
img.binarizeFromPalette(palette selection)
|
Returns the RAW DFT transform of an image
|
img.rawDFTImage(grayscale)
|
Method applies a simple band pass DFT filter
|
img.bandPassFilter(xCutoffLow, xCutoffHigh, yCutoffLow, yCutoffHigh,grayscale)
|
Skeletonization of the image
smartThreshold uses a method
|
img.skeletonize(radius)
|
graph cut, to automagically
generate a grayscale mask image
|
img.smartThreshold(mask, rect)
|
It takes a image converts it
to grayscale, and applies a threshold
|
img.smartFindBlobs(mask,rect,thresh level)
|
This method is same as Paint bucket tool in image
|
img.floodFill(points,tolerance,color,
|
manipulation program
|
lower,upper,fixed range)
|
Returns Image where the values similar to the seed pixel have
|
img.floodFillToMask(points,tolerance,
|
been replaced by the input color
|
color,lower,upper,fixed range,mask)
|
A featureset of blobs form the Mask Image
|
img.findBlobsFromMask(mask,threshold, minsize, maxsize )
|
Returns the log value of the magnitude image of the DFT transform
|
img.getDFTLogMagnitude(grayscale)
|
Apply an arbitrary filter to the DFT of an image
|
img.applyDFTFilter(flt,grayscale)
|
Applies a high pass DFT filter
|
img.highPassFilter(xCutoff,yCutoff,grayscale)
|
Applies a low pass DFT filter
|
img.lowPassFilter(xCutoff,yCutoff,grayscale)
|
Method performs an inverse discrete Fourier transform
|
InverseDFT(raw dft image)
|
DFT is applied on image using gaussian lowpass filter
|
img.applyUnsharpMask(boost,dia,grayscale)
|
Performs an optical flow calculation and attempts to find motion between two subsequent frames
|
img.findMotion(previous frame, window, method, aggregate)
|
Creates a butterworth filter of 64x64 pixels, resizes it
to fit the image
|
img.applyButterworthFilter(dia, order,highpass,grayscale)
|
Creates a gaussian filter of 64x64 pixels, resizes it to fit image
|
img.applyGaussianFilter(dia, highpass, grayscale)
|
Etiketler: Görüntü İşleme, SimpleCV